Stress-dependent finite growth in soft elastic tissues.

نویسندگان

  • E K Rodriguez
  • A Hoger
  • A D McCulloch
چکیده

Growth and remodeling in tissues may be modulated by mechanical factors such as stress. For example, in cardiac hypertrophy, alterations in wall stress arising from changes in mechanical loading lead to cardiac growth and remodeling. A general continuum formulation for finite volumetric growth in soft elastic tissues is therefore proposed. The shape change of an unloaded tissue during growth is described by a mapping analogous to the deformation gradient tensor. This mapping is decomposed into a transformation of the local zero-stress reference state and an accompanying elastic deformation that ensures the compatibility of the total growth deformation. Residual stress arises from this elastic deformation. Hence, a complete kinematic formulation for growth in general requires a knowledge of the constitutive law for stress in the tissue. Since growth may in turn be affected by stress in the tissue, a general form for the stress-dependent growth law is proposed as a relation between the symmetric growth-rate tensor and the stress tensor. With a thick-walled hollow cylinder of incompressible, isotropic hyperelastic material as an example, the mechanics of left ventricular hypertrophy are investigated. The results show that transmurally uniform pure circumferential growth, which may be similar to eccentric ventricular hypertrophy, changes the state of residual stress in the heart wall. A model of axially loaded bone is used to test a simple stress-dependent growth law in which growth rate depends on the difference between the stress due to loading and a predetermined growth equilibrium stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a continuum thermodynamics formulation and computational aspects of finite growth in soft tissues

In this paper, we try to settle the bases of a concise modelling of growth within the unified framework of continuum thermodynamics. Special emphasis is placed on the modelling of soft biological tissues at finite strains. For this, we adopt the nowadays well known kinematic assumption of a multiplicative decomposition of the deformation gradient into an elastic part and a growth part. It is sh...

متن کامل

Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics

Some fundamental issues in the formulation of constitutive theories of material response based on the multiplicative decomposition of the deformation gradient are reviewed, with focus on finite deformation thermoelasticity, elastoplasticity, and biomechanics. The constitutive theory of isotropic thermoelasticity is first considered. The stress response and the entropy expression are derived in ...

متن کامل

Crash Injury Analysis of Knee Joint Considering Pedestrian Safety

Background: Lower extremity injuries are frequently observed in car-to-pedestrian accidents and due to the bumper height of most cars, knee joint is one of the most damaged body parts in car-to-pedestrian collisions.Objective: The aim of this paper is first to provide an accurate Finite Element model of the knee joint and second to investigate lower limb impact biomechanics in car-to-pede...

متن کامل

On the mechanics of solids with a growing mass

A general constitutive theory of the stress-modulated growth of biomaterials is presented with a particular accent given to pseudo-elastic soft living tissues. The governing equations of the mechanics of solids with a growing mass are revisited within the framework of finite deformation continuum thermodynamics. The multiplicative decomposition of the deformation gradient into its elastic and g...

متن کامل

Propagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor

Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 1994